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A B S T R A C T   

Oxygenation, a key control on marine life, has a long and varied history. This is well seen in the early Meso
proterozoic. During this critical period, midway between the Great Oxidation (GOE) and Neoproterozoic 
Oxidation (NOE) events, low marine levels of pulsed oxygenation - likely driven by fluctuations in cyanobacterial 
productivity - alternated with episodic anoxia. However, since baseline oxygen levels were low, deciphering the 
scale and variability of redox evolution during this prolonged interval is challenging. This in turn has made it 
difficult to confidently identify key underlying controls on redox evolution. Combining sedimentological and 
geochemical methods, we studied shallow ~1.57 Ga shelf carbonates with contrasting depositional fabrics. 
Carbonate I/(Ca + Mg) data indicate that (i) carbonate mud precipitated in a weakly oxygenated water column, 
whereas (ii) seafloor crystal fans formed in more poorly oxygenated seawater, containing Fe2+ and Mn2+. We 
infer that in (i) weakly oxygenated (hypoxic-oxic) conditions reflect increased planktic cyanobacterial produc
tivity that, in the absence of carbonate precipitation inhibitors (Fe2+ and Mn2+), promoted water column car
bonate mud (‘whiting’) precipitation. At the same time, aerobic degradation of settling organic matter lowered 
seafloor CaCO3 saturation. In contrast, in (ii) more poorly oxygenated seawaters containing Fe2+ and Mn2+

inhibited calcite precipitation but permitted aragonite which formed seafloor crystal fans. Together, these 
contrasting precipitates indicate relatively rapid pulsed redox fluctuations. These were relatively subtle, but 
sufficient to result in contrasting carbonate sediments, readily recognizable in the field. We hypothesize that 
cyanobacterial productivity, possibly linked to the availability of nutrients such as phosphate, was a key influ
ence on water column redox cyclicity during the Mesoproterozoic.   

1. Introduction 

The Proterozoic Eon is bookended by pronounced oxygenation 
events (Lyons et al., 2014): the GOE (Holland, 2002) and the NOE (Och 
and Shields-Zhou, 2012). In contrast, oxygen-levels during the pro
tracted intervening interval, which includes the Mesoproterozoic 
(1.6–1.0 Ga), appear subdued (Planavsky et al., 2014; Gilleaudeau et al., 
2016) possibly due to nutrient limitation of oxygenic photosynthesis 
(Cox et al., 2018; Zerkle, 2018; Tang et al., 2022). Lack of observable 

chromium (Cr) isotope fractionation in Mesoproterozoic marine iron
stones and shale, and the absence of Ce anomalies in carbonates, imply 
atmospheric O2 levels < 0.1–1% PAL (Cole et al., 2016; Tang et al., 
2016; Bellefroid et al., 2018). In contrast, Cr isotope values in 1.3–1.0 Ga 
shales of the Shennongjia Group in South China, as well as in 1.1–0.9 Ga 
marine carbonates on several continents, exhibit considerable Cr- 
isotope fractionation, suggesting atmospheric O2 concentrations 
>0.1–1% PAL (Gilleaudeau et al., 2016; Canfield et al., 2018). It is well- 
known that episodes of spatially limited high oxygen levels likely 
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Fig. 1. Geological setting. (A) Major tectonic subdivisions of China, showing location of the study area. (B) Simplified paleogeographic map of North China during 
the Mesoproterozoic, showing the studied section (modified after Wang et al., 1985). (C) Simplified geological map of the study area, showing the studied section. (D) 
Stratigraphic column of the Gaoyuzhuang Formation in the Jixian Section near Sangshu’an village, with Ce anomaly and carbonate carbon isotope profiles (Zhang 
et al., 2018); and the stratigraphic column of the Gaoyuzhuang Formation at Yanqing, with I/(Ca + Mg) and carbonate carbon isotope profiles (Shang et al., 2019). 
Microspar layers frequently occur in the upper part of Member III, whereas crystal crusts are abundant in the lower part of Member IV. 
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occurred locally, e.g., ca. 1.85 Ga (Planavsky et al., 2018), ca. 1.57–1.56 
Ga (Tang et al., 2016; Zhang et al., 2018; Shang et al., 2019; Luo et al., 
2021), and ca. 1.4 Ga (e.g., Zhang et al., 2016; Hardisty et al., 2017; Wei 
et al., 2021; Ye et al., 2021; Yu et al., 2022). Thus, even if overall oxygen 
levels remained relatively low between the GOE and NOE, they were 
certainly not uniform. To further understand oxygen fluctuations during 
this interval, we selected the ~ 1.57 Ga oxygenation event (Zhang et al., 
2018; Shang et al., 2019) in the Gaoyuzhuang Formation exposed in the 
Jixian Section, east of Beijing in the North China Platform, for detailed 
examination. 

Studies of the Gan’gou section, north of Beijing, have demonstrated 
I/(Ca + Mg) increase from <0.5 μmol/mol to >2.6 μmol/mol in the 
middle Gaoyuzhuang Formation, followed by decrease to <0.5 μmol/ 
mol in the upper part, and interpreted these differences as evidence for 
pulsed oxygen increase followed by a return to overall anoxic conditions 
(Shang et al., 2019; Fig. 1). In contrast, a decline in cerium (Ce) 
anomalies from ~1.0 to ~0.8 during the same interval is followed by 
continuous negative Ce anomalies in the middle and top of the 
Gaoyuzhuang Formation in the Jixian Section, and this has been inter
preted as evidence for the onset of a more permanently oxygenated 
Mesoproterozoic ocean (Zhang et al., 2018; Fig. 1). 

To clarify these redox patterns and their relationships to sedimentary 
facies, we applied additional geochemical proxies - including I/(Ca +
Mg) measurements - to specific carbonate fabrics in the Gaoyuzhuang 
Formation near Sangshu’an in the Jixian Section (Fig. 1). Our results 
shed light on the relationship between seawater redox and carbonate 
precipitation during this early Mesoproterozoic interval of evolving 
marine redox conditions. Specifically, they suggest direct links between 
oxygenation and the water column precipitation of calcitic carbonate 
mud, and - conversely - between anoxia and seafloor aragonitic crust 
formation. 

2. Geological setting 

The Jixian Section in the Yanliao Basin, NE of North China and ~100 
km east of Beijing, China (Fig. 1), is an extensive area that exposes ~9- 
km of well-preserved Proterozoic sediments overlying Arche
an–Paleoproterozoic crystalline basement (Tosti and Riding, 2017; 
Zhang et al., 2018; Shang et al., 2019). The Gaoyuzhuang Formation 
comprises deep to shallow-water, mainly carbonate, shelf sediments 
deposited on the North China Platform (Wang et al., 1985; Zhang et al., 
2018). During the deposition of the Gaoyuzhuang Formation, the North 

Fig. 2. Lithology and facies of Gaoyuzhuang Member III near Sangshu’an (Jixian Section). (A) and (B) Microspar layers (arrows) occur at transitions from limestone 
to calcareous shale. (C)–(E) Microspar layers (arrows) in laminated dolomitic limestone. (F) Low magnification microscope image showing the sharp and relatively 
flat contact between a microspar layer (below) and overlying microbial mat carbonate rich in debris. (G) Microscopic image of pure microspar. 
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China likely located in the tropics (Zhang et al., 2012). 
The Gaoyuzhuang Formation can be subdivided into four members 

in the Jixian area. Member I mainly consists of dolomicrite - variously 
siliceous, microbial, and stromatolitic - with a ~3 m-thick quartz 
sandstone bearing ripple-marks at the base of the member (Seong-Joo 
and Golubic, 1999). Member II is characterized by manganiferous 
muddy dolostone and dark shale with manganese concretions in the 
lower part (Mei, 2008). The upper part contains moderate to thick- 

bedded dolostone with interference ripple marks (Guo et al., 2015; 
Fang et al., 2020). Member III is mainly limestone and dolomitic lime
stone, with small amounts of dolostone, limy dolostone, and interbedded 
shale. The lower part of the member contains nodular, thinly bedded 
and finely laminated limestones with black shale interbeds (Mei, 2008; 
Guo et al., 2015). Molar tooth structure occurs in the upper part of 
Member III. Member IV mainly comprises crystal fan limestone, dolo
mitic micrite and dolosparite in the lower part, and dolostones with beds 

Fig. 3. Macroscopic lithologic and facies features of Gaoyuzhuang Member IV near Sangshu’an (Jixian Section). (A) Abundant compressed crystal fans (arrows) 
within an interval (several meters thick) containing compressed crystal fans (CC) and occasionally interrupted by decimeter thick limestone layers (LL). (B) Close-up 
side view of compressed crystal fans (arrows). (C) and (D) Close-up plan views of compressed crystal fan discs, showing radiating fibrous crystals. 
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and nodules of chert in the upper part (Tang et al., 2016). 
According to petrography and sedimentary structures, the overall 

depositional environment of the Gaoyuzhuang Formation was marine, 
ranging from subtidal to supratidal (Mei, 2005; Guo et al., 2015). In 
Member I of the Gaoyuzhuang Formation, the broad, domal 

stromatolites and sandstone with ripple marks suggested the supratidal- 
intertidal environments (Seong-Joo and Golubic, 1999; Fang et al., 
2020). In the lower part of Member II, dark shale interbeds with man
ganese concretions and hummocky bedding have been interpreted as 
deep subtidal deposits around storm wave base (Mei, 2008; Fang et al., 

Fig. 4. Plan views of large (A) and small (B) compressed crystal fan discs in the Gaoyuzhuang Member IV near Sangshu’an (Jixian Section).  
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2020). Interference ripple marks in upper part may represent shallow 
subtidal deposition above fair-weather wave base (Guo et al., 2015; 
Fang et al., 2020). The interbedded black shales in Member III were 
interpreted to reflect relatively deep-water environments, likely below 
storm wave base (Mei, 2005, 2007; Guo et al., 2015). Microbialites and 
thick-bedded dolostone in Member IV were mainly interpreted as mainly 
subtidal-intertidal deposits (Mei, 2005; Tang et al., 2016). 

Specifically, microspar layers characterize the upper part of Member 
III of the Gaoyuzhuang Formation, and no crystal fans were identified in 
this interval (Fig. 2). Microspar layers commonly are 0.5–3 cm in 
thickness, laterally persistent, gray in color, and distinct from adjacent 
muddy limestone that commonly has faint yellow weathered surfaces 
(Fig. 2A and B). They commonly occur in the transition from muddy 
limestone to calcareous mudstone (Fig. 2A and B). Interbedding of 
calcareous shales with muddy limestone likely indicates an environment 
that was deep subtidal, but above storm wave base, and the microspar 
layers mainly formed during the initial stages of small-scale marine 
transgressions (Fig. 2A and B). In contrast, the laminated dolomitic 
limestone likely formed in a shallow subtidal environment, above fair- 
weather wave base (Fig. 2C–E). 

U-Pb zircon dating of tuff beds in the lower and upper horizons of 
Member III (Fig. 1) yields ages of 1577 ± 12 Ma (Tian et al., 2015) and 
1560 ± 5 Ma (Li et al., 2010), respectively. Based on these ages, together 
with stratigraphic relationships, the base and top of the Gaoyuzhuang 
Formation are estimated to be approximately 1.60 and 1.54 Ga, 
respectively. 

3. Samples and methods 

The sampled section is well exposed ~13 km NNE of Jixian 
(40◦09′2.09′′N, 117◦28′34.32′′E), to the east of Beijing. A total of 47 
samples from Members III and IV of the Gaoyuzhuang Formation were 
analyzed (Fig. 1). Carbonate samples were cut into chips and only the 
central parts were used for geochemical analysis. Fresh sample chips 
were cleaned, dried, and drilled for powder, avoiding weathered sur
faces and recrystallized areas. 

Macroscopic features were observed in the field and on polished 
slabs. Microfabrics were examined in thin sections with a Zeiss Stereo 
Discovery V20 and a Zeiss Axio Scope A1 microscope. Ultrastructures 
were studied using a Zeiss Supra 55 field emission scanning electron 
microscope (FESEM) under 20 kV accelerating voltage with a working 
distance of 6–15 mm, at the State Key Laboratory of Biogeology and 
Environmental Geology, China University of Geosciences (Beijing). A 
secondary electron imaging detector (SE2) was used to characterize 
topographic features; an AsB detector was used to characterize compo
sitional differences (backscatter electron, BSE, image). Element con
centrations in micron-size spots were analyzed by an Oxford energy 
dispersive X-ray spectrometer (EDS) connected to the FESEM. A Gatan 
ChromaCL2 cathodoluminescence (CL) detector connected to the 
FESEM was used to obtain CL images under 8 kV accelerating voltage, 
using ~ 30 min scanning time for each image. 

The method for I/(Ca + Mg) analysis is identical to that of Shang 
et al. (2019). About 4 mg of sample powders below 200 mesh were 
rinsed four times with 18.25 MΩ Milli-Q (MQ) water to remove salt and 
clay minerals (Tang et al., 2017) and any potential soluble salts. After 
drying, samples were ground again into finer and more homogenized 
powders in an agate mortar, and then weighed. Nitric acid (3%) was 
added for dissolution (40 min) and then centrifuged to obtain super
natant. For Ca, Mg and Sr analyses, 0.2 mL supernatant was diluted to 
1:50,000 with 3% HNO3 before analysis. Concentrations were measured 
using a PerkinElmer NexION 300Q Inductively Coupled Plasma Mass 
Spectrometer (ICP-MS) at the National Research Center for Geoanalysis, 
Beijing. A certified reference material JDo-1 (dolostone; reference 
values: MgO = 18.47 wt%, Ca = 33.96 wt%, and Sr = 116 μg/g) was 
measured after every nine samples; the analytical uncertainties moni
tored by JDo-1 were < 5%. For iodine analysis, 1 mL supernatant was 

used, and 3% tertiary amine solution was added to the supernatant, and 
then diluted to 0.5% with MQ water to stabilize iodine (Lu et al., 2010; 
Hardisty et al., 2017). The iodine content was measured within 48 h to 
avoid iodine loss (Lu et al., 2010), using a MC-ICP-MS (Neptune Plus, 
Thermo Fisher Scientific, Germany) at the National Research Center of 
Geoanalysis, Beijing. The sensitivity of iodine was tuned to ~ 1,500 kcps 
for a 1 ppb standard in the MC-ICP-MS. The rinse solution used for each 
individual analysis contained 0.5% HNO3, 0.5% tertiary amine, and 50 
μg/g Ca, and the typical rinse time was ~ 1 min. Analytical uncertainties 
for 127I monitored by the standard GSR 12 (reference value: I = 0.23 ±
0.04 μg/g) and duplicate samples were ≤ 6% (1σ), and the long term 
accuracy was checked by repeated analyses of reference material GSR 12 
(Shang et al., 2019). The detection limit of I/(Ca + Mg) was of the order 
of 0.1 μmol/mol. 

For carbon isotope analysis, sample powders were drilled from pol
ished slabs, avoiding weathered surfaces and recrystallized areas. All 
analyses were conducted at the State Key Laboratory of Biogeology and 
Environmental Geology, China University of Geosciences (Wuhan). 
About 150–400 μg of powder was placed in a 10 mL Na-glass vial, sealed 
with a butyl rubber septum, and reacted with 100% phosphoric acid at 
72 ◦C after flushing with helium. The evolved CO2 gas was analyzed for 
δ13C and δ18O using a MAT 253 mass-spectrometer coupled directly to a 

Fig. 5. Microfabric features of Gaoyuzhuang Member IV near Sangshu’an 
(Jixian Section). (A) Photomicrograph of fibrous crystals along the upper 
boundary of a crystal fan with blunt crystal terminations (arrows). (B) Photo
micrograph of fibrous crystals in the middle part of a compressed crystal fan. 
(C) Micrite in a carbonate layer adjacent to crystal fan. 
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Finnigan Gasbench II interface (Thermo Scientific). Isotopic values are 
reported as per mille relative to the Vienna Pee Dee belemnite (V-PDB) 
standard. Analytical precision was better than ±0.1‰ for δ13C and δ18O, 
based on replicate analyses of two laboratory standards (GBW 04,416 
and GBW 04417). 

4. Results 

Field and microscope observations show that microbial mat and 
siliciclastic components are absent from the microspar horizons (Fig. 2F 
and G), but common in adjacent layers, and that the boundaries between 
microspar layers and adjacent carbonate layers are sharp and straight 
(Fig. 2F). Microspar grains are typically spherical in shape, mainly ~10 
μm in size and rarely >20 μm (Fig. 2G). 

Crystal fans are concentrated in the lower part of Member IV, and no 
microspar layers were identified in this interval (Figs. 3 and 4). The 
crystal fan-bearing layers can be up to ten meters in thickness. They 
contain compressed crystal fans, and are occasionally interrupted by 
centimeter to decimeter thick limestone layers (Fig. 3A). The crystal fans 
are up to 20 cm in diameter and have long axes up to 10 cm in length 
(Figs. 3 and 4). The original aragonite fans are all now preserved as 

compressed discs consisting of radiating aragonite-shaped fibers 
(transformed to calcite now; Fig. 3C, D and 4). Crystal fans of this size 
have not previously been reported from the Mesoproterozoic, but these 
Gaoyuzhuang examples are broadly comparable with Archaean exam
ples (e.g., Sumner and Grotzinger, 1996, 2000; Grotzinger and James, 
2000) (see Discussion, below). Individual crystals in the fans commonly 
are ~1 mm in width, and increase slightly in width distally (Fig. 5A and 
B). They display square terminations typical of aragonite, rather than 
spear-like terminations of gypsum or calcite (Fig. 5A). Layers adjacent to 
the crystal fans are typically composed of ~20 μm size calcite grains 
(Fig. 5C). 

A total of 47 samples were analyzed for I/(Ca + Mg) and C-O stable 
isotope values (Table 1 and Fig. 6). Carbonate samples adjacent to 
microspar layers have I/(Ca + Mg) values in the range of 0.66–2.43 
μmol/mol (n = 12), which are distinctly higher than those of the 
microspar samples (0.42–1.08 μmol/mol; n = 12). In contrast, all crystal 
fan (n = 13) and micrite samples (n = 10) adjacent to the crystal fans 
have values well below 0.5 μmol/mol. The microspar layers and their 
adjacent carbonate have similar δ13C values, ranging − 0.9‰ to − 0.1‰ 
(mean − 0.5‰) and − 1.0‰ to − 0.3‰ (mean − 0.6‰), respectively. 
Crystal fans and their adjacent carbonate also show similar δ13C values, 

Table 1 
Major element, trace element and C-O isotope data for Gaoyuzhuang carbonates, near Sangshu’an, Jixian Section, China.  

Sample ID* Member I (ppm) Mg (wt%) Ca (wt%) Mg/Ca (mol/mol) I/(Ca + Mg) (μmol/mol) Sr (ppm) δ13C (‰) δ18O (‰) 

1809JX-01-H III  1.04  1.29  47.07  0.05  0.67 /  –0.7  –5.4 
1809JX-01-W III  2.79  6.88  36.31  0.32  1.84 /  –1.0  –6.3 
1809JX-2(2)-H III  0.93  1.1  41.4  0.04  0.68 258  –0.5  –5.9 
1809JX-2(1)-W III  1.51  2.08  35.23  0.10  1.23 3  –0.6  –5.6 
1809JX-3-H III  0.55  0.63  42.25  0.02  0.4 318  –0.5  –5.9 
1809JX-3-W III  0.99  2.67  35.34  0.13  0.79 3  –0.6  –5.4 
1809JX-05-H III  1.28  1.79  86.81  0.03  0.45 /  –0.4  − 5.8 
1809JX-05-W III  2.96  9.52  22.54  0.70  2.43 /  –0.4  –4.0 
1809JX-6-H III  0.61  0.83  44.01  0.03  0.42 175  –0.1  –5.5 
1809JX-6-W III  1.47  6.24  39.15  0.27  0.94 1  − 0.3  − 5.2 
1809JX-7-H III  0.54  1.27  32.32  0.07  0.5 175  –0.4  –5.7 
1809JX-7-W III  0.72  2.63  30.25  0.14  0.66 205  –0.7  –5.4 
1809JX-08-H III  1.16  2.6  29.7  0.15  1.08 /  –0.5  –5.2 
1809JX-08-W III  2.1  6.4  40.31  0.26  1.3 /  –0.8  –5.3 
1809JX-09-H III  0.91  1.04  42.68  0.04  0.64 /  –0.3  –5.6 
1809JX-09-W III  1.71  5.45  35.4  0.26  1.21 /  –0.7  –5.2 
1809JX-10-H III  1.17  3.23  39.14  0.14  0.83 /  –0.7  –5.3 
1809JX-10-W III  1.8  4.86  28.47  0.28  1.55 /  –0.7  –5.2 
1809JX-11-H III  0.48  0.51  28.04  0.03  0.52 169  –0.7  –5.7 
1809JX-11-W III  1.2  3.91  37.34  0.17  0.86 1  –0.6  –4.7 
1809JX-598.4 M− H III  0.62  1.08  39.76  0.05  0.47 /  –0.8  –6.4 
1809JX-598.4 M− W III  1.56  7.83  28.51  0.46  1.18 /  –0.5  –5.6 
1809JX-603.5 M− H III  1.15  1.9  47.21  0.07  0.72 /  –0.7  –6.4 
1809JX-603.5 M− W III  3.81  13.75  42.44  0.54  1.84 /  –0.6  –4.7 
1407JX-4-A IV  0.11  0.42  41.48  0.02  0.08 556  –0.6  –7.8 
1407JX-6-A IV  0.3  0.67  40.32  0.03  0.23 568  –0.9  –7.8 
1407JX-7-A IV  0.26  3.15  13.3  0.39  0.45 30  –0.4  –7.5 
1407JX-18-W IV  0.26  4.04  44.71  0.15  0.16 304  –1.2  –7.9 
1407JX-18–1-A IV  0.25  0.19  32.2  0.01  0.24 618  –0.8  –7.5 
1407JX-23-A IV  0.03  0.22  29.15  0.01  0.03 322  –0.6  –7.9 
1407JX-23-W IV  0.04  17.23  34.3  0.84  0.02 41  0.5  –7.2 
1407JX-24-A IV  0.12  0.31  30.57  0.02  0.12 77  0.2  –7.0 
1407JX-24-W IV  0.17  8.11  15.41  0.88  0.18 14  –0.7  –8.3 
1407JX-29-A IV  0.15  12.31  22.62  0.91  0.11 15  –0.4  –7.4 
1407JX-29-W IV  0.15  11.48  19.74  0.97  0.12 14  –0.4  –7.6 
11JX-23–1-A IV  0.12  0.28  27.86  0.02  0.13 639  –0.8  –7.3 
11JX-24–1-W IV  0.2  6.81  37.72  0.30  0.13 159  –0.4  –7.1 
11JX-24–3-A IV  0.19  0.18  30.8  0.01  0.19 498  –1.0  –3.9 
11JX-24–3-W IV  0.23  9.87  23.84  0.69  0.18 113  0.2  –6.9 
11JX-24–5-W IV  0.12  3.09  43.47  0.12  0.08 238  –0.7  –7.8 
11JX-24–7-A IV  0.12  0.16  31.77  0.01  0.12 388  –0.6  –8.0 
11JX-24–7-W IV  0.17  9.12  16.88  0.90  0.16 36  0.4  –7.0 
11JX-24–9-W IV  0.12  0.13  43.77  0.00  0.09 746  –0.5  –6.7 
XB1805-3-A IV  0.05  0.73  41.11  0.03  0.03 484  –1.0  –8.2 
XB1805-4-A IV  0.09  0.23  30.09  0.01  0.09 309  –0.7  –7.6 
XB1805-7-A IV  0.08  0.22  39.09  0.01  0.06 329  –0.8  –9.6 
XB1805-7-W IV  0.06  0.62  36.91  0.03  0.05 298  –0.7  –8.3 

* H = Microspar layer; W = Adjacent carbonate; A = Aragonite crystal fans. 
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from − 1.0‰ to +0.2‰ (mean − 0.7‰) and from − 1.2‰ to +0.5‰ 
(mean − 0.4‰), respectively. 

5. Discussion 

5.1. Oxygenation and carbonate precipitates 

Textural changes in carbonate rocks can be significant indicators of 
secular variations in seawater chemistry and redox (Sumner and Grot
zinger, 1996; Woods et al., 1999; Pope et al., 2000; Riding and Virgone, 
2020). Archean carbonates can contain decimeter- to meter-thick 
authigenic beds composed almost entirely of fibrous calcite, neo
morphosed after fibrous aragonite, and herringbone calcite that 
precipitated in situ on the seafloor; whereas in younger deposits thick 
accumulations of such carbonates are rare and restricted to anoxic event 
intervals (Sumner and Grotzinger, 1996, 2000; Woods et al., 1999; 
Grotzinger and James, 2000). Removal of carbonate precipitation in
hibitors such as Fe2+ and Mn2+ (Meyer, 1984) through oxygenation, 

should influence seafloor Ca-carbonate precipitation (e.g., Sumner and 
Grotzinger, 1996; Grotzinger and James, 2000; Lyons et al., 2014; 
Riding et al., 2014). It has been suggested that by reducing calcite 
crystallization rates and crystal nuclei formation, inhibitors kinetically 
maintain supersaturated solutions that can limit micritic carbonate 
precipitation in the water column while permitting aragonite crystal 
growth on the seafloor (Sumner and Grotzinger, 1996; 2000). Experi
ment shows that 0.02 μM Fe2+ or 3 μM Mn2+ could reduce growth rate of 
calcite by 50% (Meyer, 1984). In contrast to the overall long-term 
decline in seafloor precipitates, accumulation of carbonate mud 
increased during the Proterozoic (Swett and Knoll 1985; Grotzinger, 
1989, 1990; Sherman et al., 2000; Sumner and Grotzinger, 2004). This 
secular rise in carbonate mud abundance has been attributed to increase 
in photosynthetically induced whiting production in the water column 
(Knoll and Swett, 1990), triggered by the removal of Fe2+ and Mn2+, and 
the effect of CO2 decline on cyanobacterial photosynthesis (Riding, 
2006; Konhauser and Riding, 2012). Moreover, shallow seawater 
oxygenation could increase aerobic respiration of organic carbon (O2 +

Fig. 6. Geochemical data of the Gaoyuzhuang Formation. (A) I/(Ca + Mg) values of microspar layers, crystal fans and adjacent carbonate rocks. Microspar layers and 
adjacent carbonates in Member III have higher I/(Ca + Mg) values than crystal fans and their adjacent carbonates. In addition, in Member III, microspar layers show 
lower I/(Ca + Mg) values than those of adjacent carbonates, whereas in Member IV crystal fans and adjacent carbonate rocks both have low I/(Ca + Mg) values. 
Closely associated carbonates with different fabrics have the same sample number. (B) δ13C of microspar layers, crystal fans and adjacent carbonate rocks. Closely 
associated carbonates with different fabrics have the same sample number. (C) Cross plot of Mg/Ca vs. I/(Ca + Mg). (D) Cross plot of δ18O vs I/(Ca + Mg). (E) Cross 
plot of Sr vs. I/(Ca + Mg). (F) Cross plot of δ18O vs δ13C. 
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CH2O → HCO3
− + H+), causing decline in CaCO3 saturation near the 

sediment–water interface that further hinders seafloor precipitation 
(Higgins et al., 2009). This approach linking oxygenation and carbonate 
precipitation has been widely accepted, but rarely verified by detailed 
study of redox conditions (e.g., Woods et al., 1999; Pruss et al., 2008; 
Higgins et al., 2009). 

Carbonate I/(Ca + Mg) has been suggested as a robust proxy for 
seawater redox conditions and widely applied to both dolostones and 
limestones up to 2.5 Ga and more in age (e.g., Lu et al., 2010, 2018; 
Hardisty et al., 2014, 2017; Shang et al., 2019; Wörndle et al., 2019). In 
seawater, iodate (IO3

− ) and iodide (I− ) are the two thermodynamically 
stable forms of iodine. With decreasing oxygen concentration, IO3

− is 
reduced to I− . Experimental studies show that only IO3

− is incorporated 
into the lattice of carbonate minerals whereas I− is excluded (Lu et al., 
2010). As a result, carbonate I/(Ca + Mg) may be used to determine 
seawater [IO3

− ] and thus [O2] during carbonate mineral formation. In 
general, higher I/(Ca + Mg) values in carbonate rocks indicate higher 
oxygen concentrations in seawater (Lu et al., 2010), although diagenetic 
alternation can decrease the I/(Ca + Mg) value (Hardisty et al., 2017). 
Semi-quantitatively, I/(Ca + Mg) > 0 μmol/mol could suggest the 
accumulation of IO3

− in seawater and [O2] > 1–3 μM (e.g., Hardisty 

et al., 2014, 2017), whereas I/(Ca + Mg) > 0.5 μmol/mol, a higher value 
than that of Precambrian baseline, signifies relatively oxygenated con
ditions (Lu et al., 2017; Shang et al., 2019). I/(Ca + Mg) > 2.6 μmol/mol 
indicates absence of water bodies with [O2] <20–70 μM in present-day 
shallow seawater (e.g., Lu et al., 2016; Hardisty et al., 2017). 

The carbonates studied show generally good preservation (Figs. 6 
and 7). The crystal sizes of microspar from Member III of the Gaoyuz
huang Formation, and the carbonate rocks adjacent to microspar layers 
or crystal fans from Member III and IV, are generally small and show 
non-luminescence (Fig. 2G, 5C and 7B). The large size of crystals typical 
of the crystal fans from Member IV reflects their original size (Fig. 5B). 
The I/(Ca + Mg) ratios measured in the samples do not show correlation 
with Mg/Ca ratios (Fig. 6C), δ18O values (Fig. 6D), and Sr contents 
(Fig. 6E). δ18O values are clearly higher than − 10‰, and the C and O 
isotopes do not show co-variation (Fig. 6F). These results suggest 
negligible diagenetic alteration in our samples (cf. Shang et al., 2019; 
Wörndle et al., 2019). 

Our I/(Ca + Mg) results suggest that microspar layers from Member 
III (Fig. 8A) reflect overall hypoxic (oxygen concentration <70 μM) to 
oxic conditions (oxygen concentration higher than 70 μM; cf. Lu et al., 
2020), in which calcium carbonate precipitated from the water column 

Fig. 7. Backscatter electron (BSE), CL and EDS analysis results of microspar layers, crystal fans and adjacent carbonate rocks from the Gaoyuzhuang Formation near 
Sangshu’an village, Jixian Section. (A) BSE image of microspar which mainly consists of calcite (Cal) with minor dolomite (Dol) and quartz (Q). (B) CL image of the 
area shown in panel A, showing non-luminescence of calcite and dolomite but bright luminescence of quartz. (C) BSE image of carbonate (adjacent to a microspar 
layer) mainly consisting of dolomite (Dol), with minor calcite (Cal). (D) CL image of the area shown in panel C, showing non-luminescence of calcite and dull- 
luminescence of dolomite but bright luminescence of quartz. (E) BSE image of a crystal fan, which consists of calcite. (F) CL image of the same area as panel E, 
showing non-luminescence of calcite. (G) BSE image of carbonate close to a crystal fan, mainly consisting of calcite (light areas), with more minor amounts of 
dolomite (dark areas). (H) CL image of the area shown in panel G, showing non-luminescence of calcite and dull-luminescence of dolomite. (I) EDS spectrum of 
quartz. (J) EDS spectrum of dolomite lacking detectable Fe and Mn. (K) EDS spectrum of calcite. (L) EDS spectrum of dolomite with minor amounts of Fe. 
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as carbonate mud. In contrast, crystal fans and adjacent carbonate muds 
in Member IV (Fig. 8B), that respectively formed directly on the seafloor 
and in the water column, were precipitated in overall hypoxic to anoxic 
conditions. Considering that ferruginous is the pervasive conditions of 
Precambrian seawater (Planavsky et al. 2011; Poulton and Canfield, 
2011), and no pyrite identified in the aragonite seafloor precipitation, 
we proposed that crystal fans likely precipitated in Fe(II)-bearing rather 
than H2S-bearing conditions. The Fe(II) concentration was likely high 
enough (e.g., >0.02 μM; cf. Meyer, 1984) to inhibit calcite precipitation 
from water column, but lower than the saturation level of siderite. 

In Phanerozoic carbonates, possible sources of carbonate mud 
include water column ‘whiting’ precipitation stimulated by cyano
bacterial photosynthesis, skeletal disaggregation and grain abrasion, 
and fish excretion (Gischler and Zingeler, 2002; Trower et al., 2019). 
Eukaryotes were negligible components in the early Mesoproterozoic (e. 
g., Luo et al., 2015), but water column precipitation is likely at that time 
(Tosti and Riding, 2017) and also in the Neoproterozoic (Knoll and 
Swett, 1990). In the Gaoyuzhuang Formation, we speculate that thick 
pure microspar layers, distinct from the adjacent micrite layers (Fig. 2), 
could represent rapid event deposits formed during pulsed oxygenation. 
Mixing of deep anoxic with shallow moderately oxygenated seawater 

could increase carbonate-saturation (Woods et al., 1999), and inhibitors 
such as Fe2+ and Mn2+ would be oxidatively removed. Under these 
conditions, blooms of planktic cyanobacteria could result in rapid pre
cipitation of fine-grained carbonate (‘whitings’) in the water column and 
its accumulation as calcitic carbonate mud on the seafloor (Riding, 
2006; Tosti and Riding, 2017). In this view, the observed change from 
predominantly microspar layers, in upper Member III, to crystal fans in 
lower Member IV, could reflect decline in oxygen concentration 
following pulsed oxygenation: an example of direct linkage between 
carbonate precipitate fabrics and the seawater redox state. This expla
nation is consistent with stratigraphic changes in carbonate I/(Ca + Mg) 
ratios within the same interval in the Gan’gou section (Fig. 1D) and also 
with our new I/(Ca + Mg) data obtained from the coeval Jixian Section 
(Fig. 6A). 

Connections between seawater redox conditions and pathways of 
carbonate precipitation have been identified in other Mesoproterozoic 
intervals in North China, supporting a link between carbonates of this 
age and the redox conditions of seawater that could be used as a redox 
proxy (Wu et al., 2021). For example, abundant seafloor precipitated 
aragonite fans in Member II of the Wumishan Formation (~1.50 Ga) 
(Tang et al., 2014) with near zero I/(Ca + Mg) ratios, suggest hypoxic to 
anoxic conditions (Wu et al., 2021). In contrast, carbonate muds that are 
abundant in Member IV of the Wumishan Formation (~1.48 Ga) (Sun 
et al., 2020) and in Member II of the Tieling Formation (~1.44 Ga) that 
appear to be water column precipitates possibly associated with cya
nobacteria (Tosti and Riding, 2017), have relatively high I/(Ca + Mg) 
ratios (generally > 0.5 μmol/mol) and negative Ce anomalies (down to 
0.8), suggesting moderately oxygenated conditions (Sun et al., 2020; 
Wei et al., 2021; Yu et al., 2022). 

5.2. Oxygenation and photosynthesis 

Oxidation of marine dissolved organic matter has been proposed as a 
likely mechanism terminating the Gaoyuzhuang oxygenation event 
(Shang et al., 2019). This is supported by negative excursions (− 3.5‰) 
of Ccarb and Corg associated with the oxygenation event in Member III of 
the Gaoyuzhuang Formation (Shang et al., 2019; Zhang et al., 2018). 
However, the initial trigger for Gaoyuzhuang oxygenation has not been 
addressed. Oxygenic photosynthesis is the direct and major source of 
Earth surface oxygen (Catling and Kasting, 2017; Cox et al., 2018; 
Laakso and Schrag, 2018). A rise in cyanobacterial productivity could 
simultaneously increase oxygen concentration in shallow water, and 
intensify anoxia in deeper water by decomposition of the resulting 
organic matter (cf. Wang et al., 2020). If the abundance of microspar 
layers in Gaoyuzhuang Member III indicates ‘whiting’ events stimulated 
by blooms of planktonic cyanobacteria, then they would also reflect 
increased oxygenation episodes. This reasoning is supported by 
increased organic carbon and P contents (reflecting high cyanobacterial 
productivity) associated with the simultaneous increase in carbonate I/ 
(Ca + Mg) and negative shift of Ce/Ce* (reflecting oxygenation) (Zhang 
et al., 2018; Shang et al., 2019). 

Phosphorus (P) availability is widely considered the ultimate 
limiting nutrient for marine productivity over geological time scales 
(Tyrrell, 1999), and thereby a control on the rate of O2 production 
through oxygenic photosynthesis and organic carbon (Corg) burial 
(Bjerrum and Canfield, 2002; Reinhard et al., 2017; Cox et al., 2018; 
Laakso and Schrag, 2018; Alcott et al., 2019). Thus, high P content in 
carbonates during the ~1.57 Ga Gaoyuzhuang oxygenation event 
(Shang et al., 2019) could imply enhanced cyanobacterial productivity. 
Marine transgression and/or upwelling may have introduced P-rich 
anoxic deep water. This reasoning is in agreement with facies evidence 
of significant transgression during the deposition of Member III. On a 
much broader scale, a switch in provenance to more primitive (i.e., 
mafic) precursor lithologies, may be among the underlying factors that 
globally increased continental weathering input of P to seawater at this 
time (Cox et al., 2016, 2018). Further studied are required to elucidate 

Fig. 8. Proposed models of the environments of precipitation of microspar 
layers in Member III (A) and crystal fans in Member IV (B). (A) Marine trans
gression introduced P-rich anoxic deep water into shallow seawater or 
increased nutrient input from the continent, stimulating cyanobacterial pro
ductivity and oxygenation. Under these moderately oxygenated conditions 
(high I/(Ca + Mg) values), scarcity of Fe2+ and Mn2+ in the water column, 
together with lower CaCO3 saturation near the seafloor due to aerobic degra
dation of deposited organic matter, promoted photosynthetically induced 
micritic calcite precipitation events (‘whitings’) in the water-column that 
accumulated as microspar sediment. (B) Oxidation of dissolved organic matter 
contributed to termination of the Gaoyuzhuang oxygenation event (Shang et al., 
2019). Under the resulting more anoxic conditions (low I/(Ca + Mg) values), 
aragonitic seafloor crystal fans formed in response to increase in inhibitors, 
such as Fe2+ and Mn2+, in the water column, and simultaneous increase in 
carbonate saturation near the seafloor. 
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the genesis of pulsed oxygenation ~ 1.57 Ga. 

6. Conclusions 

In the early Mesoproterozoic Gaoyuzhuang Formation, our results 
link distinctive changes in authigenic carbonate precipitation, from 
centimeter-thick pure microspar layers in Member III to decimeter-scale 
aragonite crystal fans in Member IV, to variation in seawater oxygena
tion. Based on texture, composition and I/(Ca + Mg) values, the 
microspar layers are interpreted to have precipitated as water-column 
calcitic muds under overall hypoxic to oxic conditions, whereas the 
crystal fans formed as acicular aragonite that nucleated directly on the 
seafloor under more anoxic conditions. We infer that these carbonate 
textures were determined by the interplay of ambient seawater redox 
conditions with the availability carbonate precipitation inhibitors (Fe2+, 
Mn2+) and pathways of organic matter degradation. Under relatively 
oxygenated conditions, scarcity of Fe2+ and Mn2+ together with lower 
CaCO3 saturation due to aerobic degradation of deposited organic 
matter, promoted photosynthetically induced micritic calcite precipi
tation in the water-column but hindered precipitation of seafloor fans. In 
contrast, under more anoxic conditions, aragonitic seafloor precipitates 
preferentially formed when inhibitors, such as Fe2+, were present and as 
anaerobic degradation of settling organic matter increased carbonate 
saturation near the seafloor. Thus, contrasts in carbonate texture be
tween microspar layers (Gaoyuzhuang Member III) and crystal fans 
(Member IV), could record a significant change from more to less 
oxygenated conditions during this critical phase of mid-Proterozoic 
Earth surface history. 
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