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ABSTRACT

Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial

maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs

at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidi-

fication has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike

major reef builders such as coralline algae and corals that more closely control their calcification, bacterial

calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities

have declined in thickness over the past 14 000 years with largest reduction occurring 12 000–

10 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification

and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was

increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness

could have substantially affected reef development over glacial cycles, as rigid crusts significantly

strengthen framework and their reduction would have increased the susceptibility of reefs to biological and

physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects

on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced

calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing

anticipated anthropogenic effects.
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INTRODUCTION

Carbon dioxide (CO2) released to the atmosphere can raise

global temperature and increase ocean acidification (Doney

et al., 2009). Acidification occurs as atmospheric CO2

dissolves in surface seawater (Raven et al., 2005). As this

increases the solubility of CaCO3 minerals, it could influ-

ence biocalcification in marine organisms (Gattuso et al.,

1995; Feely et al., 2004; Andersson et al., 2011), including

tropical reef formation (Kleypas et al., 1999, 2006; Lang-

don et al., 2000; Hoegh-Guldberg et al., 2007; Pandolfi

et al., 2011; Andersson & Gledhill, 2013). However, evalu-

ating these effects has proved to be challenging. The

responses of calcifying organisms to increased CO2 and

lower pH are often complex (Delille et al., 2005; Langer

et al., 2006; Anthony et al., 2008; Ries et al., 2009; Erez

et al., 2011; McCulloch et al., 2012; Andersson &

Gledhill, 2013; Venn et al., 2013) and can be difficult

to evaluate with confidence (De’ath et al., 2009), especially

in relatively short-term experiments and mesoscale stud-

ies (Boyd & Doney, 2002; Andersson & Mackenzie,

2011; Andersson et al., 2011). The responses of calcified

organisms to acidification in part reflect differences in bio-

calcification processes, particularly the degree of control

that the organisms exert. Whereas dominant framebuild-

ers in present-day tropical reefs, such as scleractinian corals

and crustose coralline red algae can closely direct the

precipitation of their skeletons, less controlled bioinduced

calcification, for example, in bacteria, is much more suscep-

tible to environmental influence. Progressive acidification

should therefore affect bioinduced calcification sooner than

more controlled calcification, providing an early indicator

of long-term change in seawater chemistry (Riding et al.,

2011). To explore this, we examined heavily calcified
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bacterial crusts (Fig. 1) in tropical coral reefs and com-

pared changes in their thickness over the past 14.5 thou-

sand years (ka) with computed changes in surface tropical

ocean pH for the same period. Our results show that

bacterial crusts in reef cavities have declined significantly in

thickness since ~12 ka ago. We attribute this decline to

millennial-scale ‘natural’ ocean acidification. In contrast,

acidification does not appear to have affected biocontrolled

reef builders such as corals until the present day. This

suggests that bioinduced bacterial calcification is a sensitive

indicator of early changes in ocean acidification that long

predate anthropogenic influence.

Biocalcification

Many algae and invertebrates use aragonite and/or cal-

cite (CaCO3) to construct their skeletons, and bacte-

ria can also promote precipitation of these minerals

A B C
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Fig. 1 Gray bacterial crusts on lighter colored

coral and coralline algal reef framework and

bioclastic debris in IODP Expedition 310 cores

through latest Pleistocene–Early Holocene reef

rock at Mara’a, SW Tahiti. Sample ages

increase from A to F. (A) Irregularly layered

locally dendritic crusts on finely branching and

encrusting corals (paler gray) and coralline

algae (white). IODP core image 310-

M0007A-14R-01_21-30; age is slightly

younger than 10 ka; width of view 4.5 cm.

(B) Irregular crust, binding and encrusting

debris (lower part) and Porites, and grading in

the upper part from layered to dendritic

fabric. IODP core image 310-M0007A-18R-

01_61-70; age 10 ka; width of view 4.5 cm.

(C) Crust filling cavity beside coral ranges

from delicately layered (lower right) to

dendritic and porous (upper right). 310-

M0007B-21R-01_20-30; age 11.1 ka; width

of view 6 cm. (D) Laminated crusts occluding

framework cavity between Acropora; in the

lower part, the crust rigidly binds bioclasts

including white Halimeda segments. IODP

core image 310-M0007A-29R-01_0-14; age

~12 ka, width of view 6 cm. (E) Smooth and

delicately layered domical crust (top)

veneering underlying coralline algae (white),

and (bottom) binding Halimeda segments.

310-M0017A-18R-02_30-38; age 12.2 ka;

width of view 2.5 cm. (F) Laminated crust,

becoming dendritic near top, thickly veneering

vertical coral branch (lower left) and coralline

algae (white). IODP core image 310-

M0005D-2R-01_47-63; age 12.4 ka; width of

view 5 cm. Image numbers indicate

expedition, hole, core, section, and interval.

Original images available at http://sedis.iodp.

org/. © IODP/ECORD.
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(Leadbeater & Riding, 1986; Lowenstam & Weiner,

1989). The extent to which organisms control calcifica-

tion ranges from poorly to closely regulated, and these

end-members have been characterized as ‘bioinduced’ and

‘biocontrolled’ calcification, respectively (Lowenstam,

1981; Mann, 2001). These diverse processes are still

being elucidated, and the terminology used in biocalcifica-

tion and biomineralization studies continues to evolve. In

addition to ‘bioinduced’ and ‘biocontrolled’, research-

ers examining how organic macromolecules and environ-

mental conditions interact to influence mineralization

have suggested ‘organomineralization’ (Trichet & D�efar-

ge, 1995) and ‘organomineral’ (D�efarge & Trichet,

1995; Perry et al., 2007), and ‘biologically influenced

mineralization’ (Dupraz et al., 2009; Perito & Mastromei,

2011); sometimes prompting spirited debate (Altermann

et al., 2009; D�efarge et al., 2009, 2010; Perry &

Sephton, 2009). Reef-building coralline algae (Kamenos

et al., 2013) and invertebrates, including corals (Puverel

et al., 2005; Allemand et al., 2011; Moya et al., 2012),

display relatively controlled calcification (Orr et al., 2005;

Kleypas et al., 2006). In contrast, bioinduced calcification

is much less closely regulated, making it sensitive to

changes in seawater carbonate chemistry (Kleypas et al.,

2006). The particular influence of ambient water

chemistry on bacterial carbonates is reflected in their envi-

ronmental distribution at the present day and by their

secular abundance over geological time (Riding, 1982,

1992, 1993; Grotzinger, 1990; Grotzinger & Kasting,

1993; Webb, 2001; Konhauser & Riding, 2012).

Bacterial crusts

Bacterial carbonates (e.g., stromatolites) were important

reef builders long before eukaryotes appeared (Hofmann,

2000). During the past 500 Ma, they are common in algal

and invertebrate reefs (Pratt, 1982) and persist today in

tropical reefs that have colonized shallow-water environ-

ments as sea level rose following the last glacial maximum

21 ka ago (Camoin et al., 2012). Whereas the illuminated

surfaces of these reefs are typically occupied by corals and

algae, the bacterial carbonates form as late-stage veneers

on the walls of cavities within the skeletal framework

(Camoin et al., 1999, 2006, 2012; Riding, 2011; Seard

et al., 2011). Initial studies drew attention to the impor-

tance of these rigid crusts for the synsedimentary lithi-

fication of Holocene reefs in the Caribbean (Macintyre

et al., 1968; Land & Goreau, 1970; Macintyre, 1977) and

Great Barrier Reef (Marshall & Davies, 1981; Marshall,

1983). They played a similar sedimentological role in the

late Miocene of the Mediterranean (Pedley, 1979; Riding

et al., 1991), during the Pleistocene–Holocene transition

at Tahiti, French Polynesia (Montaggioni & Camoin,

1993), and in the Indian Ocean (Camoin et al., 2004;

Gischler et al., 2008). They also occur in submarine caves

(Macintyre, 1984; Reitner, 1993; Zankl, 1993; Reitner

et al., 2000; Guido et al., 2013) and on deep fore-reef

slopes (Camoin et al., 2006; Webster et al., 2009).

These reefal bacterial crusts are typically millimetric to

centimetric in thickness, exceptionally 20 cm (Camoin

et al., 1999), with smoothly domical to irregularly ‘knobby’,

microcolumnar or complex dendritic external morphologies,

and aphanitic to patchy or delicately laminated internal

macrofabric (e.g., Land, 1971; Macintyre, 1977; Marshall,

1986; Sherman et al., 1999; Webb et al., 1999; Camoin

et al., 1999, 2006; Cabioch et al., 2006, p. 304; Fig. 1). In

thin section, they have a distinctive gray to brown clotted

microfabric (Camoin et al., 2007; Westphal et al., 2010)

with silt-size, apparently autochthonous, peloids distributed

within a microsparitic, locally fenestral, microfabric that

has an overall grainstone appearance (Riding & Tom�as,

2006).

Reefal bacterial crusts in late Neogene reefs have vari-

ously been termed cements (Macintyre et al., 1968; James

et al., 1976; Lighty et al., 1985; Macintyre, 1985), stro-

matolites (Riding et al., 1991), microbialites (Cabioch

et al., 1999b; Camoin et al., 1999), and thrombolites

(Brachert & Dullo, 1991; Camoin et al., 2006). They

appear to be invariably composed of magnesian calcite,

typically in the range 12–18 mole % MgCO3 (Macintyre

et al., 1968; Land & Goreau, 1970; Macintyre, 1977,

1984; Camoin et al., 1999), and preferentially develop in

cavities on high-energy reef margins (Macintyre, 1977;

p. 513; Marshall & Davies, 1981; Marshall, 1983; Montag-

gioni & Camoin, 1993; Camoin & Montaggioni, 1994;

Cabioch et al., 1999a; Seard et al., 2011) where they

typically constitute a late, often the last, stage of reef

growth. They contain abundant biomarkers with intermedi-

ate-to-high specificity for sulfate-reducing bacteria, whereas

biomarkers indicative of cyanobacteria are absent (Heindel

et al., 2010, 2012), confirming earlier suggestions of sul-

fate reduction from Jamaica (Land & Goreau, 1970; Pigott

& Land, 1986), the Caribbean and Australia (Reitner et al.,

2000), Bahamas (Malone et al., 2001), and Tahiti (Camoin

et al., 1999). Drill cores through ~90 m of post-glacial

(<~14 ka) reef deposits at Papeete in NW Tahiti have

revealed that whereas bacterial crusts are abundant in the

older part of the succession (~12 ka ago), they are scarce or

absent after ~6 ka ago (Camoin et al., 1999). Subsequent

IODP Expedition 310 drilling at Mara’a and Tiarei (in SW

and N Tahiti, respectively) has provided a millennial-scale

record of bacterial crusts through the reefs since the latest

Pleistocene (Camoin et al., 2007).

Ocean acidification

Variation in ocean pH is a natural part of glacial cycles,

with pH being higher during glacials and lower during

© 2014 John Wiley & Sons Ltd
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interglacials (Archer & Meier-Reimer, 1994; Sanyal et al.,

1995). These changes are linked to fluctuations in

atmospheric CO2 (Peacock et al., 2006; Anderson et al.,

2009; Sigman et al., 2010). Analyses of air bubbles

preserved in Antarctic ice reveal significant fluctuations in

global atmospheric CO2 level over the past 800 ka, with

lower levels during glacial periods and higher levels during

interglacials (L€uthi et al., 2008). In the course of the

deglaciation of the past 21 ka, CO2 increased from 184 to

265 ppmv between 21 and 9 ka ago in the Concordia

Dome ice core (Monnin et al., 2001) and from 265 to

283 ppmv between 11.1 ka and 390 years ago in the Tay-

lor Dome ice core (Inderm€uhle et al., 1999). Subsequent

rise to the current global CO2 level of ~395 ppmv is

attributed to fossil fuel burning (Quay et al., 1992; Feely

et al., 2004). Progressive dissolution of this additional

atmospheric CO2 in seawater should increase acidity, low-

ering ocean pH and carbonate saturation state (Ω) (Broec-

ker et al., 1971, 1979; Takahashi, 1979). Evidence that

deglacial increase in atmospheric carbon dioxide has caused

millennial-scale ocean acidification (Caldeira & Wickett,

2003) is supported by boron isotopes in foraminifer

shells that indicate repeated pH fluctuation during glacial–

interglacial cycles of the past 2.1 million years (Ma), with

higher glacial and lower interglacial values (H€onisch &

Hemming, 2005; H€onisch et al., 2009).

MATERIAL AND METHODS

Reef crust thickness measurement

We obtained bacterial crust thickness data for the past

16.1 ka from Tahiti and more limited Global published

data for the past 11.5 ka for localities elsewhere in the

Pacific and in the Indian Ocean and Caribbean (Fig. 2).

Tahiti sites

We measured maximum crust thicknesses (see Table S1)

in photographs of offshore cores. These cores were drilled

through submerged reef intervals by Integrated Ocean

Drilling Program (IODP) Expedition 310 ‘Tahiti Sea

Level’ at Tahiti in October–November 2005 (Camoin

et al., 2007). High-resolution core images can be

accessed at the IODP archive http://sedis.iodp.org/ (Sci-

entific Earth Drilling Information Service—SEDIS). To

locate the images for the cores from IODP Expedition

310, under ‘search’, follow ‘Project/Expedition/Site/

Hole’ (IODP, 310). Image numbers indicate expedition,

hole, core, section, and interval. For example, number

310-M0017A-18R-02_30-38 indicates 310 (expedition),

M0017A (hole), 18R (core), 02 (section), 30–38 (interval

in cm from top of section).

IODP Expedition 310 drilled between 2 and 13 holes in

each of three offshore areas around Tahiti. The cores are

65 mm in diameter. The reef sediments of the Last Degla-

ciation were penetrated by 16 cores that range in depth

from 45 to 122 m below present-day sea level and in age

from ~5.9 to 16.1 ka ago. We measured bacterial crusts in

the following cores from two of these areas for which there

are numerous dates at various levels (Abbey et al., 2011;

Camoin et al., 2012; Deschamps et al., 2012):

Maraa: M0005A, M0005C, M0005D, M0007A, M00

07B, M0015A, M0015B, M0016A, M0016B, M00

17A, and M0018A

Tiarei: M0009B, M0009C, M0009D, M0021A,

M0021B, M0023A, M0023B, M0024A, M0025B

Details of these boreholes, cores, and ages are given in

Camoin et al. (2007, 2012), Westphal et al. (2010),

Abbey et al. (2011, figs. 4, 5), and Deschamps et al.

(2012, fig. S1).

Fig. 2 Reef localities from which the crust thickness data in Fig. 3 were compiled (see Table S2).

© 2014 John Wiley & Sons Ltd
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We constrained crust ages in the data we collected

(Table S1) by only measuring crusts in cores with dated

horizons (see Abbey et al., 2011; table 4, figs. 4 and 5;

Camoin et al., 2012; fig. 1a; Deschamps et al., 2012; table

S2). The ages provided by Abbey et al. (2011) were

obtained by radiocarbon dating of corals and coralline

algae, those provided by Camoin et al. (2012) by radiocar-

bon and U/Th radiometric dating of corals, and those of

Deschamps et al. (2012) by U/Th radiometric dating of

corals.

Global tropical sites

We compiled crust thicknesses from published descriptions

of reefs in the Caribbean, Indian Ocean, and Pacific (other

than Tahiti; Fig. 2; for data sources see Table S2).

Seawater chemistry

Calculations, past 21 ka

We calculated pH, dissolved inorganic carbon, and satura-

tion states for calcite and aragonite for surface seawater at

Tahiti over the past 21 ka using CO2SYS (version 2.1, 18

September 2012: CO2Sys_v2.1.xls), a computer code

developed for CO2 system calculations (Pierrot et al.,

2006). We based CO2 partial pressure data (pCO2) on

atmospheric values indicated by ice core records (In-

derm€uhle et al., 1999; Monnin et al., 2001). We took

Tahiti seawater surface salinity to be 36.2& at the present

day (Gouriou & Delcroix, 2002) and 37.3& 21 ka ago,

that is, 3% saltier than present day due to ice formation, as

indicated by lower sea level (Sigman & Boyle, 2000).

Average present-day sea-surface temperature at Tahiti is

27 °C (Ballantyne et al., 2005), and estimates for the

equatorial Pacific during the last glacial maximum

(LGM) range from �1 to �3 °C (Lea et al., 2000) of

present-day values. Present-day average surface seawater

has a total alkalinity of 2400 lmol kg�1 corresponding to

salinity of 35& (DOE, 1994). We projected this alkalinity

to 2482 lmol kg�1 for present-day salinity of 36.2& at

Tahiti. We then allowed alkalinity to increase linearly to

3% higher at 21 ka ago, following the salinity trend. The

carbonate system is well defined by the two given parame-

ters of total alkalinity and pCO2 out of the four system

variables: total inorganic carbon, alkalinity, pH, and pCO2

(Stumm & Morgan, 1996).

Under chemical equilibrium conditions, saturation state

(Ω) for CaCO3 minerals is determined by the activity prod-

ucts over the solubility constants (KCaCO3) of carbonate

minerals: Ω = (Ca2+)(CO3
2�)/KCaCO3, where KCaCO3

differs for aragonite and calcite, and the data are from

Mucci (1983) as implemented in CO2SYS. The concentra-

tion of calcium is calculated from the seawater composition

(Table S3) and the corresponding salinity. Carbonate

concentrations are calculated from the total CO2, pH, and

the dissociation constants for carbonic acid. The values of

Henry’s law constant for CO2 (KH), equilibrium constants

for carbonic acid (Ka1, Ka2), other constants for species,

such as sulfate, phosphate, silicate, as well as calcium

carbonate equilibrium constants (Kcalcite and Karagonite) and

their corresponding corrections for pressure and tempera-

ture, are incorporated in CO2SYS (Pierrot et al., 2006).

We selected the Ka1 and Ka2 values from Kso4 (Millero,

2010), from Dickson (1990), and the total boron sources

from Lee et al. (2010). The pH values reported here are

based on the seawater scale. No pressure effects were

considered, as calculations are for surface seawater. Previ-

ously (Riding et al., 2011), we used PHREEQC code

(Parkhurst & Appelo, 1999) to calculate carbonate specia-

tion, pH, and saturation states of carbonate minerals. Dur-

ing the current study, we initially used both PHREEQC

and CO2SYS (Pierrot et al., 2006) and verified that, with

the same input data, we produced the same outputs

regardless of the code. Here, we present our results calcu-

lated using CO2SYS as this computer program can be eas-

ily implemented and the results compared with previously

published work (Kleypas et al., 2006).

Calculations, past 414 ka

In calculating the data shown in Fig. 6 (surface ocean

fluctuations in pH and calcite saturation for the past

414 ka), we used CO2SYS (version 2.1, 18 September 2012:

CO2Sys_v2.1.xls; Pierrot et al., 2006) with CO2 values

from the Vostok ice core (Petit et al., 1999; http://www.

ncdc.noaa.gov/paleo/icecore/antarctica/vostok/vostok_

co2.html), assuming average seawater surface salinity of

36.7&, average sea-surface temperature of 25.5 °C, and

average alkalinity of 2518 (lmol kg�1 seawater) through-

out. In this basic rendition of the concept, pH and calcite

saturation have the same curve. The calculation shows a

pH range of 8.18–8.31, a difference of 0.13, similar to the

results of H€onisch & Hemming (2005).

RESULTS

Tahiti data

The core record commences ~16.1 ka ago and terminates

~3 ka ago (Camoin et al., 1999; fig. 3). The sediments in

these cores mainly comprise reef frameworks of corals

encrusted by coralline algae, foraminifers, vermetids, bry-

ozoans, and serpulids that formed at depositional depths of

<10 to >20–30 m (Abbey et al., 2011). The skeletal

framework was subsequently commonly internally veneered

by bacterial crust which partially or almost completely filled

primary cavities. Locally, it constitutes the major volumet-

ric component of the reef rock (Seard et al., 2011).

Between 16.1 and 14.5 ka ago, the main reef builders at

these locations were massive corals comprising two main

© 2014 John Wiley & Sons Ltd
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coral assemblages: (i) massive Porites, and (ii) robust Pocil-

lopora and massive Montipora (Westphal et al., 2010;

Abbey et al., 2011; Camoin et al., 2012). Reef cavities

around the massive corals were small. This reef structure

limited crust development, and maximum crust thicknesses

in this initial interval of reef growth are correspondingly

relatively low, mostly <5 cm (Fig. 3A). In the reef deposits

younger than ~14.6 ka, the dominance of branching colo-

nies in the coral assemblages created cavernous structures

in which crusts had more space to grow (Camoin et al.,

2012). These coral assemblages include (i) branching Acro-

pora, (ii) branching Porites and Pocillopora, and (iii)

branching Porites and encrusting Porites and Montipora

(Camoin et al., 2012). These frameworks persist today

(Cabioch et al., 1999a), although the reef framework at

the top of most of the holes is built by encrusting corals

(agariciids and faviids) together with thin coralline algal

crusts. These are deepwater assemblages that reflect deep-

ening at each site that preceded final ‘drowning’ that

terminated reef growth as sea level rose (Westphal et al.,

2010; Camoin et al., 2012). We therefore focus on the

record of cavernous reef framework that commenced

~14.6 ka ago, about one-third of the way into the current

deglaciation and that continues in the drill core until 3 ka

ago. Our data show that maximum crust thickness was

12.5 cm 14 ka ago and 12 cm 12.5 ka ago, then declined

steeply to 2 cm 8.5 ka ago, followed by slight increase to

2.5 cm 5.9 ka ago. After 5.9 ka, no bacterial reef crusts

have been reported from the uppermost core-sections,

which end ~3 ka ago (Seard et al., 2011; Camoin et al.,

1999; fig. 3; Abbey et al., 2011).

Global tropical data

The exceptional dataset provided by the continuous and

well-dated Tahiti drill core described above is currently

unmatched elsewhere. Deglacial reefs worldwide are mostly

submerged due to continued sea level rise. As a result,

apart from Tahiti, crust observations are scarce and, in

addition, they commonly lack accurate thickness records

and are commonly poorly dated. Nonetheless, the well-

dated global crust thickness values that we have located

show a distinct trend (Fig. 3B). These data show a maxi-

mum crust thickness of 8.7 cm 12 ka ago, steep decline to

3 cm 10 ka ago, slight increase to a plateau near ~5 cm

from 7.5 to 3 ka ago, and then steep decline to 0.5 cm

1 ka ago.

Surface seawater calculated chemical values

We computed separate pH and saturation trends for LGM

(21 ka) temperatures of 24 °C and of 26 °C, relative to

the present day 27 °C at Tahiti. Changes in seawater com-

position were calculated based on salinity variation, that is,

with total elemental composition corresponding to salinity

change. The results are shown in Fig. 4b. In the Supple-

mentary Information, they are also plotted without scale-

breaks, to show pH variation (Fig. S1) and carbonate

saturation states for calcite and aragonite (Fig. S2) over the

last 21 ka.

Our calculations indicate pH decline from ~8.35 to

8.18, as pCO2 increased from 21 ka to 390 years ago

(Fig. 4B). During the corresponding period, Ωcalcite

decreased from 9.35 to 7.44, and Ωaragonite from 6.16 to

4.94. These calculated results are based on LGM tempera-

tures of 24 °C 21 ka ago (Lea et al., 2000). A temperature

of 26 °C at the LGM (Ballantyne et al., 2005) yielded

slightly different starting values (pH 8.32, Ωcalcite 9.38,

Ωaragonite 6.22) but similar trends (Fig. 4B).

Overall, these pH and carbonate saturation trends exhi-

bit steep decline from 17 to 11 ka ago, with a pause ~14
to 12 ka ago and slight recovery 11 to 7 ka ago, then

gradual decline to pre-industrial levels 390 years ago. Sub-

sequent pH and Ω values both show sharp decline to the

present day (Fig. 4B).

A

B

Fig. 3 Bacterial crust thicknesses. (A) Tahiti, measured from IODP Expedi-

tion 310 cores with known ages (Abbey et al., 2011; Camoin et al., 2012).

Cavernous reef framework began to develop in these cores ~14.6 ka ago.

(B) Other Pacific, Atlantic, and Indian Ocean reefs. Small open symbols

with bars indicate samples whose age ranges are poorly constrained (see

Supporting Information).
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COMPARISON OF RESULTS

We compared calculated surface seawater calcite saturation

(Ω) values (Fig. 4B) with the maximum crust thickness

measured in cores with dated horizons from Tahiti, and

also with the thicknesses from published descriptions of

reefs in the Caribbean, Indian Ocean, and Pacific (other

than Tahiti; Fig. 4A). The best correlation is obtained

using Ω values calculated with 26 °C starting temperatures.

For the combined data from Tahiti and elsewhere, a two-

tailed Pearson’s correlation between maximum crust thick-

ness and calculated omega calcite (based on LGM 26 °C)
values shows a direct, significant relationship (r = 0.621,

P < 0.01, n = 44).

Our calculated values for surface seawater pH and car-

bonate saturation show a declining trend from ~17 to

10 ka ago (Fig. 4B). We have no crust thickness data from

cavernous reef framework until ~14.6 ka ago, and there is

no decline in crust thickness until 11–12 ka ago, near the

Pleistocene–Holocene boundary (11.7 ka ago; Fig. 4A).

Our combined data (Fig. 4A,B) indicate three stages; (i)

Decline in maximum crust thickness from 12 cm 12.5 ka

ago to 5 cm 9 ka ago, with steepest decline from 12.5 to

11 ka ago, as Ωcalcite fell from 8.3 to 7.8 and pH decreased

by 0.04 units. This decline commenced during the Youn-

ger Dryas and coincides with a period of increased rate of

CO2 rise that has been linked to strengthening of southern

hemisphere westerly winds (Mayr et al., 2013); (ii) relative

stability, with moderate calcification (thicknesses near

5 cm) and Ωcalcite between 7.4 and 7.9, from 9 to 2 ka

ago; (iii) either continued stability, or possibly further

decline to the present day. Data are scarce, but at the pres-

ent day, bacterial crusts in tropical reef cavities appear to

be generally thin or absent, coincident with values of tropi-

cal surface seawater pH (8.06), Ωcalcite (6.17), and Ωaragonite

(4.10) that are the lowest of the past 21 ka.

These similarities between secular patterns of crust thick-

ness and calculated carbonate saturation and pH for the

past ~14 ka, together with evidence that these changes

were widespread in the tropical realm, are consistent with

the interpretation that deglacial decline in reefal microbial

crusts reflects progressive ocean acidification (Riding et al.,

2011). Although crust thickness is significantly reduced

near the Pleistocene–Holocene transition, no correspond-

ing changes in coral calcification have been reported. The

Tahiti post-glacial reef record since ~14.1 ka is commensu-

rate with vigorous coral growth. The fauna includes abun-

dant acroporids, regarded as typical of healthy reefs

(Cabioch et al., 1999a; Abbey et al., 2011; Camoin et al.,

2012). Evidence of significant decline in bacterial crust

thickness during this interval, long before observed effects

on biocontrolled calcification, therefore suggests bioin-

duced bacterial calcification as an early indicator of ocean

acidification.

DISCUSSION

Seawater carbonate chemistry

Our calculated pre-industrial (390 years ago) saturation

values of surface seawater at Tahiti are Ωaragonite 4.94 and

A

B

Fig. 4 A: Crust thicknesses at Tahiti (filled diamonds, from Fig. 3), and

from Global localities (open diamonds). B: Calculated chemical parameters

for surface seawater at Tahiti over the past 21 ka: pH (based on seawater

scale; black symbols), carbonate saturation states of calcite (blue symbols),

and aragonite (red symbols). These show decreasing trends in response to

increase in atmospheric CO2 since the last glacial maximum (Inderm€uhle

et al., 1999; Monnin et al., 2001). Calculations are based on Tahiti pres-

ent-day seawater surface data (salinity 36.2&, temperature 27 °C). At the

LGM (21 ka ago), 3% higher salinity and 3 °C lower temperature values

are assumed (Lea et al., 2000) than at the present day, and data calculated

with this LGM temperature (24 °C) are shown by open symbols. Data cal-

culated with a temperature of 26 °C at the LGM (Ballantyne et al., 2005)

are shown by filled symbols. At time 0, note low present-day pH and satu-

ration state values (left-hand margin). For details, see Methods and Results.
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Ωcalcite 7.44 (Fig. 4B). These are compatible with Ωaragonite

>4.5 estimated for the region in year 1765 (Feely et al.,

2009), equivalent to Ωcalcite >~6.75. Our calculated values

of surface seawater pH at Tahiti are 8.18 (pre-industrial,

390 years ago) and 8.06 (present-day; Fig. 4B). The latter

value is compatible with present-day surface seawater pH

at Tahiti (Moorea) of ~8.1 (Douville et al., 2010; based

on Pelejero et al., 2005). The calculated pH is sensitive to

pCO2, and the measured pH values are also dependent on

the localized chemical compositions of microenvironments.

So far as we are aware, our results are the first detailed

calculated trends of seawater pH and saturation state of

carbonate minerals for the past 21 ka. Previous calculations

of pH and carbonate saturation values were for shorter

intervals or for separate time points; for example, the

LGM, 390 years ago, and the present day (Kleypas et al.,

2006). The absolute values of our calculated seawater

carbonate chemistry differ from the estimates of Kleypas

et al. (2006) because these authors used different input

values, including lower salinity, temperature, and alkalinity,

than we used in this study. Lower salinity corresponds to a

lower ionic concentration, lower temperature favors car-

bonate dissolution, and lower alkalinity results in a lower

carbonate concentration; all these would contribute to

lower saturation values for carbonate minerals. The overall

data trends are, however, similar to Kleypas et al. (2006),

that is, our calculated value of Ωcalcite declined from 9.35

at 21 ka ago to 7.44 in pre-industrial time due to the

increase in CO2. To compare our methodologies, using

the input values of Kleypas et al. (2006), we obtained

identical output values. Our calculated seawater pH of

8.33 (�0.02) and 8.18, for the LGM and 390 years ago,

respectively, is similar to those based on boron isotopes

(H€onisch & Hemming, 2005). Additionally, the difference

in pre-industrial pH between our results and those of Kley-

pas et al. (2006) is small, with our calculated pH of 8.18

being comparable to their value of 8.16. The slightly

higher pH value that we obtained is consistent with the

somewhat higher alkalinity and salinity of surface seawater

at Tahiti.

Framework and crust development

Two quite different variables that can influence crust thick-

ness are seawater carbonate saturation and the framework

space available for cryptic crust growth. The latter compli-

cates interpretation of the record of Tahiti crust thickness

data prior to ~14.6 ka ago when the reefs were dominated

by massive coral colonies (Fig. 3A). We attribute lower

crust thicknesses at Tahiti ~16–5 to 14.6 ka ago to the

limited space available for their development in the rela-

tively small cavities of this more massive initial reef (Seard

et al., 2011). This situation altered when the reef structure

changed to branching framework ~14.6 ka ago as sea level

rise increased (Deschamps et al., 2012). It might be

expected that these open frameworks, with thick crusts

generated by ‘catch-up’ reef growth, would return to den-

ser framework with thinner crusts as sea level rise slowed.

In this case, the observed pattern of crust increase and

decline might simply reflect change in rate of sea level rise.

However, following the ‘massive coral’ interval, the reef

framework continued to be dominated by branching spe-

cies (Acropora robusta, A. danai) until the end of the reef

record 3 ka ago (Cabioch et al., 1999a; Abbey et al.,

2011; Camoin et al., 2012). Consequently, despite large

variations in coral composition after 14.6 ka, there is no

sustained recurrence of massive coral. Furthermore, the

reef accretion rate of ~7.5 mm year�1 between 7.67 and

5.65 ka ago (estimated from data in Cabioch et al., 1999a;

fig. 3) resembles that of the same reef 12–10 ka ago

(Abbey et al., 2011; Camoin et al., 2012). We therefore

infer that the Tahiti record of crust decline since ~14.6 ka

ago reflects changes in factors that promote crust accretion

rate (such as carbonate saturation) rather than available

space within the framework. It also does not appear to

reflect reduction in the time available for crust formation,

because bacterial crusts can accrete at rates of 2.9 mm/

100 years (Jell & Webb, 2012). We conclude that decline

in maximum measured crust thickness at Tahiti since

~14.6 ka ago is unlikely to be an artifact of reef structure.

Peloids and crust formation

Peloids are granular micritic aggregates (McKee & Guts-

chick, 1969). In addition to forming cavity-veneering

crusts, silt-size peloids commonly occur in reef interstices

as geopetal and layered fills (James et al., 1976; Lighty

et al., 1985; Macintyre, 1985; Reid et al., 1990; Macintyre

& Aronson, 2006; No�e et al., 2006) that appear to be al-

lochthonous (Land & Moore, 1980; Lighty et al., 1985).

These allochthonous (or quasi-autochthonous) peloids

were interpreted as bacterial by Chafetz (1986). A possible

mechanism for their fabric development is provided by

studies of calcifying organic material influenced by bacterial

decay of sponges in reef caves at Lizard Island and St Croix

(Reitner, 1993; Reitner et al., 2000). Nonetheless, such a

mucus matrix mechanism does not rule out the possibility

that peloids can form as precipitated flocs in suspension in

water and subsequently settle out (Land & Moore, 1980;

Lighty et al., 1985). If peloids precipitated around bacte-

rial cells, as Chafetz (1986) proposed, then saturation

could have been increased by processes of the bacteria

themselves, especially in isolated cavities. Organic remains

preserved in peloid cores (Reitner et al., 2000), support

Chafetz’s (1986) report of bacterium-sized pores within

peloid crystals. Reitner et al. (2000) also suggested that

increased alkalinity in the sponges undergoing decay

resulted from sulfate reduction.
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An additional environment in which Late Pleistocene–

Holocene peloidal crusts developed is on drowned reefs

and fore-reef slopes that are now at depths of up to 500 m

(Brachert & Dullo, 1991; Webster et al., 2004, 2009;

Camoin et al., 2006) or more (Brachert, 1999). Whereas

peloidal sediments in reef crusts and fills often exhibit

grainstone fabrics (James et al., 1976; Reid et al., 1990;

Riding & Tom�as, 2006), crusts on these more open

deeper water surfaces tend to be packstones (Webster

et al., 2009) and can be mixed with allochthonous carbon-

ate and siliciclastic sediment. They commonly overlie deep-

water assemblages of corallines and foraminifers, are partly

contemporaneous with phosphate-FeMg crusts, and are

themselves overlain by planktic carbonates (Camoin et al.,

2006; Webster et al., 2009). Shallow-water peloidal crusts

in poorly illuminated reef cavities or caves are also com-

monly associated with sciaphilous organisms. Garrett

(1969) noted that, as light diminishes, surfaces of reef

caves are successively occupied by coralline algae, bryozo-

ans, foraminifers, and serpulids. Martindale (1992, fig. 7)

suggested that the same sequence, superimposed on coral

framework, indicates light reduction, either in cavities in

the aggrading reef framework or as a result of deepening

caused by relative sea level rise. Peloidal reef crusts typically

occupy the final position in this succession (Marshall,

1983; Jones & Hunter, 1991; Montaggioni & Camoin,

1993; Camoin et al., 1999, 2006; Reitner et al., 2000;

Cabioch et al., 2006). In Lizard Island caves, peloidal

crusts succeed crustose coralline algae when light levels are

<5 lx (Reitner et al., 2000, p. 151). Restriction of peloidal

crusts to low-light habitats suggests inability to compete in

more illuminated sites (Reitner et al., 2000, p. 156). Rele-

gation of microbial carbonates to low-light habitats due to

competition for space with eukaryotes is consistent with

competitive interactions that have long been linked to

long-term geological decline in stromatolite abundance

(Garrett, 1970; Awramik, 1971).

Bacterial dissimilatory sulfate reduction (DSR) (Postgate,

1959) is important in the anaerobic decomposition of pres-

ent-day marine organic matter (Jørgensen & Fenchel,

1974; Jørgensen, 1982; Jørgensen & Kasten, 2006), and

the ability of DSR to increase ambient carbonate alkalinity

has long been recognized (Galliher, 1933; Abd-El-Malek

& Rizk, 1963; Kaplan et al., 1963; Richards, 1965).

Among the factors that influence this process are iron and

electron donor availability (Ben-Yaakov, 1973; Visscher

et al., 1998; Visscher & Stolz, 2005; Gallagher et al.,

2012, 2014) and the fate of the CO2 and HS� produced

(Walter & Burton, 1990; Walter et al., 1993). In diffu-

sion-limited biofilms, accumulation of CO2 can decrease

pH and CaCO3 mineral saturation states, creating localized

microenvironments that are unfavorable for CaCO3 precip-

itation. Similarly, as ambient pH decreases in the ocean to

<pKa of H2S, the formation of H2S will consume alkalinity,

which also affects CaCO3 precipitation. Nonetheless, the

overall ability of DSR to increase alkalinity gives it a signifi-

cant role in promoting sedimentary CaCO3 precipitation

(Nadson, 1903, 1928; Berner et al., 1970; Deelman,

1975; Jørgensen & Cohen, 1977; Lyons et al., 1984;

Pigott & Land, 1986; Castanier et al., 2000). Although

DSR is important in anoxic environments, many sulfate-

reducing bacteria have developed strategies to deal with

oxygen (Jørgensen, 1977; Dolla et al., 2006) especially

near oxic/anoxic interfaces, as in cyanobacterial mats (Can-

field & Des Marais, 1991; Visscher et al., 1992; Teske

et al., 1998; Minz et al., 1999) where they can also partic-

ipate in calcification (Visscher et al., 2000; Dupraz & Vis-

scher, 2005; Visscher & Stolz, 2005). Nonetheless, reefal

crusts at Tahiti contain microborings consistent with

poorly illuminated conditions (Heindel et al., 2009), and

biomarker studies that demonstrate the presence of sulfate-

reducing bacteria also reveal an absence of cyanobacteria

(Heindel et al., 2010, 2012). Reefal crust microbial com-

munities therefore appear to be unlike photic microbial

mats, commonly linked to stromatolites, in which photo-

synthetic primary producers such as cyanobacteria support

complex communities (Van Gemerden, 1993; Des Marais,

2003). We envisage that peloidal cryptic reef crusts are cal-

cified biofilms dominated by sulfate-reducing bacteria that

promoted their own calcification in restricted poorly illumi-

nated (Cabioch et al., 1999b) and low-oxygen (Heindel

et al., 2010) framework interstices where they were able to

obtain nutrients from reef-derived organic matter (see

Nutrient sources, below).

Nutrient sources

Reitner (1993) linked microbialite calcification at Lizard

Island to alkalinity influx from continental silicate weather-

ing. Subsequently, Holocene reduction in bacterial crust

development at Vanuatu (Cabioch et al., 1999b) and

Tahiti (Camoin et al., 1999) was also related to changes in

groundwater supply from these volcanic islands. It was pro-

posed that seepage and runoff promoted crust formation

by supplying alkalinity and nutrients to the fringing reefs

and that this ceased as slower sea level rise allowed the

development of back-reef lagoons that impeded groundwa-

ter flow (Camoin et al., 1999). Camoin et al. (2006) also

linked upwelling of nutrient-rich deep water to crust

formation on deep fore-reef slopes at Tahiti and the Mar-

quesas Islands, and upwelling during rapid sea level rise

was again invoked to explain reef crust abundance 16–

10 ka ago at Vanuatu in the SW Pacific (Cabioch et al.,

2006). Heindel et al. (2012) considered that volcanic

hinterlands serve to boost (but not trigger) microbialite

formation and suggested that this could explain why Tahiti

and Vanuatu microbialites are thicker than those in

Maldive and Belize reefs. However, they probably were not
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comparing similar ages. It is correct that older crusts at

both Tahiti (12 ka) and Vanuatu (~11 to ~11.5 ka) can be

7.5 to 10 cm thick, whereas Maldive and Belize crusts are

thinner (3.5–4 cm), but the latter examples are also

younger (~7.7 to ~5.4 ka; see Supporting Information).

Our results do not preclude local effects on alkalinity

and nutrients from either terrestrial weathering or deepwa-

ter upwelling, but two broad considerations are pertinent.

First, evidence that deglacial reefal bacterial crust reduction

was widespread, the correspondence between thickness and

saturation trends shown here, and compatibility of these

changes with established links between bioinduced bacte-

rial calcification and carbonate saturation, all suggest the

involvement of global as well as local factors (Riding et al.,

2011). Second, reefs, in common with deep-sea environ-

ments, are supplied by pelagic particulate (Lochte & Tur-

ley, 1988; Gast et al., 1998) and dissolved organic carbon

(Paerl, 1993). These sources can support benthic hetero-

trophic bacteria (Cole et al., 1987; Alongi, 1990) and can

be supplemented by upwelling and runoff, as well as by

interaction of interstitial fluids with basement rocks (Stein-

mann & D�ejardin, 2004). In addition, heterotrophic bacte-

ria such as sulfate reducers can be supported by particulate

and dissolved organic matter derived from the reef organ-

isms with which they are closely associated (Richter et al.,

2001; Scheffers et al., 2005; Heindel et al., 2012). It has

been shown that decomposition of organic matter in reef

frameworks produces interstitial waters that are sufficiently

nutrient-rich for reefs to be net exporters of nutrients

(Tribble et al., 1990; Ayukai, 1993; Rougerie & Wauthy,

1993; Rasheed et al., 2002). It therefore seems reasonable

to infer that reef-derived nutrients could sustain cryptic

bacterial crust development, irrespective of conditions of

local runoff or upwelling.

High-energy reef margins

Reefal peloidal crusts are well developed on high-energy

margins of late Quaternary reefs (e.g., Land & Goreau,

1970; Macintyre, 1977; Camoin & Montaggioni, 1994;

Seard et al., 2011). This non-uniform distribution suggests

effects by seawater flushing on both precipitation (e.g.,

James et al., 1976) and nutrient circulation. Reef frame-

works are permeable structures in which lateral and vertical

water circulation is promoted by wave, swell, and tidal

fluxes, particularly in marginal zones (Buddemeier & Ober-

dorfer, 1986). Seawater flushing favors precipitation by

replenishing solutes (Morse & Mackenzie, 1990, p. 266)

and in shallow zones promotes warming and degassing of

water that locally raises saturation state (e.g., Whittle et al.,

1993, p. 239). Marshall (1986, p. 23) recognized that

these effects are likely to vary during reef accretion. Prefer-

ential development of crusts on high-energy margins is

therefore consistent with the dependence of bioinduced

bacterial calcification on increased carbonate saturation

state.

Magnesian calcite

The mineralogy and composition of the CaCO3 precipi-

tated during biocalcification affects its response to dissolu-

tion. Aragonite is more soluble than calcite, and at high

levels of magnesium incorporation, magnesian calcite solu-

bility can exceed that of aragonite (Berner, 1975; Anders-

son et al., 2003; Morse et al., 2006). It is therefore

significant that reefal bacterial crusts appear consistently to

be high-magnesian calcite (Land & Goreau, 1970; Macin-

tyre, 1977, 1984; Camoin et al., 1999), although the rea-

sons for this are not clear. A possible contributing factor is

the location of these crusts in reef interstices, because

selective aragonite precipitation by corals could locally

increase seawater [Mg2+]:[Ca2+] ratio in poorly flushed

microenvironments. In addition, Mg increases the stability

of amorphous CaCO3 (ACC), thereby inhibiting vaterite

crystallization and favoring direct transformation of ACC

to calcite. A neutral starting pH can also favor crystalliza-

tion of ACC to calcite (Rodriguez-Blanco et al., 2012).

Although bacterial sulfate reduction can occur in acidic

environments, it is most commonly observed at circumneu-

tral pH (Widdel, 1988; Church et al., 2007; Bayraktarov

et al., 2013). Whatever the factors influencing magnesian

calcite formation, its increased solubility with respect to

associated Ca-carbonates is likely to increase the sensitivity

of reefal bacterial crusts (Andersson & Mackenzie, 2011)

and can therefore be expected to have contributed to their

early decline in response to progressive acidification.

Reef structure over glacial–interglacial cycles

Cryptic bacterial crusts enhance reef strength and volume

by rigidly coating skeletons and fragments, especially in

branched frameworks with extensive cavities (Fig. 1). Cen-

timetric to decimetric crusts locally constitute 80% of reef

framework in Tahiti reefs near Papeete (Camoin et al.,

1999), conferring strength that promotes reef accretion

and relief (Camoin & Montaggioni, 1994; Camoin et al.,

1999; Seard et al., 2011). Conversely, where crusts are

thin or absent, branched coral frames are more prone to

storm fragmentation (Hubbard et al., 1990; fig. 5), as

reflected by commonly poor core recovery in Holocene

reefs (Engels et al., 2004). Boron isotope values in fora-

minifer shells indicate repeated pH fluctuation, with higher

glacial (~8.24–8.29) and lower interglacial (~8.14) values,

as CO2 has varied over the past 2.1 Ma (H€onisch & Hem-

ming, 2005; H€onisch et al., 2009). Glacial–interglacial

cycles profoundly affect shallow reef environments, particu-

larly changes in water depth and accommodation space.

We propose that thicker crusts in glacial reefs, due to
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increased carbonate saturation (Fig. 6), should also have

influenced reef development. Glacial reef frameworks could

have been strengthened, and interglacial reefs may have

been left more prone to bioerosion and physical damage

that could result in lower overall accretion rate.

Most glacial reefs are now submerged by sea level rise

(Thomas et al., 2009). Nonetheless, deeper cores at Tahiti

indicate the presence of thick microbial crusts in reefs that

predate a coralgal interval that yields ages of 133 to

138 ka (Thomas et al., 2009; Iryu et al., 2010). The coral-

gal interval probably corresponds to the last interglacial

(Marine Isotope Stage (MIS) 5e; Blanchon et al., 2014).

The underlying reefs with microbial crusts therefore

probably formed during the penultimate deglaciation (Ter-

mination II). The reef record of the last interglacial

(MIS-5e, ~125 ka ago) is more accessible because it

formed during higher sea level. Raised reefs of this age in

the Caribbean (Fig. 5) and Red Sea appear to lack crusts

and are commonly heavily bored and fragmented, and reef

crest corals other than massive colonies are commonly bro-

ken into rudstone (Chen et al., 1991; Strasser et al., 1992;

Pandolfi et al., 1999; Blanchon & Eisenhauer, 2001;

Perry, 2001; Bruggemann et al., 2004; Schellmann & Rad-

tke, 2004; Blanchon, 2010). Although these data are lim-

ited, they support the view that crusts were thicker during

glacial periods when carbonate saturation was increased

and thinner during interglacial acidification (Fig. 6). Fur-

ther studies, especially of well-dated cores such as those

obtained at Tahiti, are needed to explore the relationships

between reef structure, crust development, and fluctuations

in seawater chemistry in Pleistocene reefs. We did not

examine marine cementation in our samples, but there is

evidence that precipitation of abiotic cements, which in

Quaternary reefs are mainly aragonite and magnesian cal-

cite (Perrin, 2011), has been slowed by recent acidification

(Andersson et al., 2003; Manzello et al., 2008), also

weakening the structure of Holocene reefs (Rasser & Riegl,

2002).

Tropical carbonates during glacial cycles

In addition to changes produced by higher glacial salinities

due to storage of fresh water as polar snow and ice, marine

alkalinity could have been affected as sea level fluctuations

Fig. 5 Last interglacial reef crest deposit (Little Bay, NE Barbados), showing

framework fragmentation. Hammer is 30 cm long.

Fig. 6 Calculated surface ocean fluctuations in pH and calcite saturation state during the past four glacial cycles (414 ka). Calculation based on CO2 values

from the Vostok ice core (Petit et al., 1999), assuming average seawater surface salinity of 36.7&, average sea-surface temperature of 25.5 °C, and average

alkalinity of 2518 (lmol kg�1 seawater) throughout. Numbered circles show the relative positions of the reef deposits illustrated in Figs 1 and 5. We propose

that increased carbonate saturation during glacial periods (blue shading) resulted in thicker crusts that strengthened reef frameworks, such as at Tahiti

(Fig. 1), whereas thinner crusts formed under conditions of ocean acidification, leaving interglacial reefs more prone to biological and physical damage

(Fig. 5).
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expanded or reduced the shelf area available for shallow-

water carbonate precipitation. Sea level rise since the LGM

is estimated to have increased coral reef habitats by ~80%
(Kleypas, 1997). Although we did not attempt to include

this factor in our estimates of seawater chemistry, the

opposite effect should have left surplus CaCO3 in solution

in glacial oceans. These fluctuations, between more alkaline

glacial and more acidic interglacial surface seawater, may

have affected not only reefs but shallow marine carbonate

precipitation generally. Among the earliest processes likely

to be affected are abiotic (cement, ooid) precipitation and

bioinduced calcification by bacteria (and also by green

algae such as Halimeda, Penicillus, and dasycladaleans).

However, as with glacial reefs, scarcity of shallow-water

glacial environments due to sea level rise during the latest

interglacial limits the evidence currently available to

examine this suggestion.

Pre-Quaternary acidification events

Evidence for similar acidification effects on calcification and

reef structure might be preserved in much older glacial

cycles in the geologic record, and also in non-glacial

acidification events (H€onisch et al., 2012), such as the

Paleocene–Eocene thermal maximum (PETM) ~56 Ma ago

(Zachos et al., 2005) and also near the Permian–Triassic

boundary (PTB) 252 Ma ago (Payne et al., 2007, 2010;

Montenegro et al., 2011). The PETM has been suggested

as an analog for present-day ocean acidification (Doney

et al., 2009, pp. 183–184). By that time, calcified cyano-

bacteria were already scarce in marine environments (Arp

et al., 2001), but peloidal microbial crusts occur and thickly

encrusted late Thanetian reef corals that precede the PETM

(Zamagni et al., 2009). Subsequently, in the earliest Ypre-

sian, corals such as Goniopora and Actinacis formed reef

‘knobs’ but coral frame-building capacity was otherwise

reduced (Zamagni et al., 2012), and thick microbialites

have not been reported from this interval. The PETM also

coincided with large decline in dasycladalean green algal

diversity (Aguirre & Riding, 2005). Present-day well-calci-

fied dasycladaleans are limited to warm and tropical seas

with increased carbonate saturation. Their bioinduced,

essentially aragonitic, calcification makes them prone to

reduction in carbonate saturation state. More details are

required of the secular pattern of decline of dasycladaleans

at the PETM to evaluate whether they were responding to a

geologically short-lived episode of marine acidification.

At the PTB, attention has focused on microbialites that

are locally abundant near the boundary (Schubert & Bott-

jer, 1992; Baud et al., 1997, 2007; Kershaw et al., 2011).

It has been suggested that these deposits were immediately

preceded by a submarine dissolution event that was

followed by immediate subsequent increase in CaCO3

precipitation (Payne et al., 2007). It is also possible to

consider the subsequent history of microbialite decline at

the end of the Hindeodus parvus conodont zone (Ezaki

et al., 2008; Kershaw et al., 2011), within <100 ka of the

PTB (Shen et al., 2011). Whereas dasycladaleans declined

abruptly at the PETM, in the Early Triassic they are

entirely lacking throughout the Induan, only reappearing

in the late Olenekian, nearly 5 Ma after the PTB (Aguirre

& Riding, 2005; Ioan Bucur, pers. comm.). Calcified

cyanobacteria similarly disappear during this interval (Arp

et al., 2001). However, if the scale and duration of these

reductions in calcified bacteria and algae following the

PTB are confirmed, then they raise questions, as recovery

of ocean buffering from even intense acidification is not

expected to be so prolonged (Archer et al., 1997; Berner,

2002; Caldeira & Wickett, 2003).

SUMMARY AND CONCLUSIONS

Over geologically short timescales, atmospheric CO2

increase can cause ocean acidification. Quaternary seawater

was more alkaline during glacial periods and more acidic

during interglacials. Whether these changes affected biocon-

trolled calcification, as in corals, for example, remains uncer-

tain. Here, we present evidence that bacterially bioinduced

calcification in reefs has responded to recent millennial-scale

changes in ocean acidification. Bacterial calcification is sensi-

tive to changes in carbonate saturation state and pH. It

declined significantly in reefs ~12 ka ago, near the Pleisto-

cene–Holocene transition, and has diminished further since

then. This is indicated by changes in the thickness of centi-

metric lithified bacterial crusts that veneer cavities in tropical

reefs. Well-dated IODP cores through reefs at Tahiti show

that these crusts declined in thickness from 12 cm 12.5 ka

ago to ~2 cm 6 ka ago. Global data are more limited,

because most Holocene reefs are now at or below sea level

and few have been cored, but tropical reefs worldwide show

signs of similar progressive reduction in crust thickness over

the past 12 ka. This trend matches decline in calculated

tropical surface ocean pH and carbonate saturation for the

same interval.

Bacterial crusts are most abundant in cavernous reef

frameworks in exposed high-energy locations where seawa-

ter flushing is intense, and they locally constitute 80% of

the solid reef. They can substantially strengthen reef struc-

ture by rigidly bonding and stabilizing skeletal frameworks.

We infer that bacterial reef crusts would have been thicker

during glacial periods, when seawater carbonate saturation

was increased, thereby strengthening reef frameworks, and

thinner in response to interglacial acidification, leaving

reefs weaker. Evidence for similar acidification effects on

calcification, reef structure, and possibly marine carbonate

sediments in general could be preserved in earlier glacial

cycles. However, reliable reef crust thickness and age data

are scarce, underscoring a need for more detailed studies,
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such as that carried out by IODP at Tahiti, to further elu-

cidate glacial reef history, including fluctuations in crust

development.

Previous studies attributed Holocene thinning of bacterial

crusts to reduction in the supply of nutrients and alkalinity

as slowing sea level rise caused decline in terrestrial runoff

and/or deepwater upwelling. We do not rule out these local

effects. However, the apparent global extent of tropical crust

decline, its correspondence with calculated ocean acidificat-

ion rate, and its compatibility with the dependence of

bioinduced bacterial calcification on degree of carbonate

saturation all implicate a progressive global factor, such as

deglacial ocean acidification, as a more likely proximal cause.

Our results suggest that deglacial ocean acidification has

been causing decline in bioinduced bacterial calcification in

tropical reefs for at least 12 ka, long before any observed

effects on biocontrolled calcifiers. As anthropogenic carbon

dioxide release exacerbates this millennial-scale ‘natural’

trend, it could start to affect reef organisms such as corals

and coralline algae that, until now, appear to have been

able to maintain close control over their calcification. The

sensitivity of bacterial reef crusts, and other bioinduced

calcifiers such as green algae, to changes in seawater car-

bonate chemistry, together with their long geological his-

tory, could assist identification of ocean acidification events

much deeper in Earth history.
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